ANALOG High Speed, ESD-Protected, Half-/Full-Duplex
DEVICES in the industry of the DEVICES *i*Coupler Isolated RS-485 Transceiver

FEATURES

Isolated, RS-485/RS-422 transceiver, configurable as half- or full-duplex ±8 kV ESD protection on RS-485 input/output pins 16 Mbps data rate Complies with ANSI TIA/EIA RS-485-A-1998 and ISO 8482: 1987(E) Suitable for 5 V or 3.3 V operation (V_{DD1}) **High common-mode transient immunity: >25 kV/μs Receiver has open-circuit, fail-safe design 32 nodes on the bus Thermal shutdown protection Safety and regulatory approvals UL recognition: 5000 V rms isolation voltage for 1 minute, per UL 1577 VDE certificate of conformity DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 Reinforced insulation,** $V_{\text{IORM}} = 848 \text{ V}$ **peak Operating temperature range: −40°C to +85°C Wide body, 16-lead SOIC package**

APPLICATIONS

Isolated RS-485/RS-422 interfaces Industrial field networks INTERBUS Multipoint data transmission systems

GENERAL DESCRIPTION

The ADM2491E is an isolated data transceiver with ±8 kV ESD protection and is suitable for high speed, half- or full-duplex communication on multipoint transmission lines. For halfduplex operation, the transmitter outputs and the receiver inputs share the same transmission line. Transmitter output Pin Y is linked externally to receiver input Pin A, and transmitter output Pin Z is linked to receiver input Pin B.

The ADM2491E is designed for balanced transmission lines and complies with ANSI TIA/EIA RS-485-A-1998 and ISO 8482: 1987(E). The device employs Analog Devices, Inc., *i*Coupler® technology to combine a 3-channel isolator, a threestate differential line driver, and a differential input receiver into a single package.

The differential transmitter outputs and receiver inputs feature electrostatic discharge circuitry that provides protection to ±8 kV using the human body model (HBM). The logic side of the device can be powered with either a 5 V or a 3.3 V supply, whereas the bus side requires an isolated 5 V supply.

The device has current-limiting and thermal shutdown features to protect against output short circuits and situations in which bus contention could cause excessive power dissipation.

The ADM2491E is available in a wide body, 16-lead SOIC package and operates over the −40°C to +85°C temperature range.

FUNCTIONAL BLOCK DIAGRAM

ADM2491E

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

REVISION HISTORY

10/07-Revision 0: Initial Version

SPECIFICATIONS

All voltages are relative to their respective ground; 3.0 V \leq V_{DD1} \leq 5.5 V, 4.5 V \leq V_{DD2} \leq 5.5 V. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DD2} =$ 5.0 V, unless otherwise noted.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
SUPPLY CURRENT						
Power Supply Current, Logic Side						
TxD/RxD Data Rate = 2 Mbps	I_{DD1}			3.0	mA	Unloaded output
TxD/RxD Data Rate = 16 Mbps	I_{DD1}			6	mA	Half-duplex configuration, R TERMINATION = 120 Ω , see Figure 5
Power Supply Current, Bus Side						
TxD/RxD Data Rate = 2 Mbps	I _{DD2}			4.0	mA	Unloaded output
TxD/RxD Data Rate = 16 Mbps	I_{DD2}			50	mA	$V_{DD2} = 5.5 V$, half-duplex configuration, R TERMINATION = 120 Ω , see Figure 5
DRIVER						
Differential Outputs						
Differential Output Voltage, Loaded	$ V_{OD} $	2.0		5.0	V	R_L = 100 Ω (RS-422), see Figure 3
		1.5		5.0	\vee	R_L = 54 Ω (RS-485), see Figure 3
		1.5		5.0	\vee	$-7 V \leq V_{TEST1} \leq 12 V$, see Figure 4
Δ V _{OD} for Complementary Output States	Δ $ V_{OD} $			0.2	\vee	$R_L = 54 \Omega$ or 100 Ω , see Figure 3
Common-Mode Output Voltage	Voc			3.0	\vee	$R_L = 54 \Omega$ or 100 Ω , see Figure 3
Δ V _{oc} for Complementary Output States	Δ $ V_{\text{OC}} $			0.2	V	R_L = 54 Ω or 100 Ω , see Figure 3
Output Leakage Current (Y, Z)	I_O			100	μA	$DE = 0 V, V_{DD2} = 0 V$ or 5 V, $V_{IN} = 12 V$
		-100			μA	$DE = 0 V$, $V_{DD2} = 0 V$ or 5 V, $V_{IN} = -7 V$
Short-Circuit Output Current Logic Inputs DE, RE, TxD	\log			250	mA	
Input Threshold Low	V_{\parallel}	$0.25 \times V_{DD1}$			\vee	
Input Threshold High	V_{IH}			$0.7 \times V_{DD1}$	V	
Input Current	I _{TxD}	-10	$+0.01$	$+10$	μA	
RECEIVER						
Differential Inputs						
Differential Input Threshold Voltage	V _{TH}	-0.2		$+0.2$	V	
Input Voltage Hysteresis	V _{HYS}		30		mV	$V_{OC} = 0 V$
Input Current (A, B)	h.			$+1.0$	mA	$V_{OC} = 12 V$
		-0.8			mA	$V_{OC} = -7 V$
Line Input Resistance	R_{IN}	12			$k\Omega$	
Logic Outputs						
Output Voltage Low	VOLRXD		0.2	0.4	V	$I_{ORxD} = 1.5$ mA, $V_A - V_B = -0.2$ V
Output Voltage High	VOHRXD	$V_{DD1} - 0.3$	$V_{DD1} - 0.2$		\vee	$I_{ORxD} = -1.5$ mA, $V_A - V_B = 0.2$ V
Short-Circuit Current				100	mA	
Three-State Output Leakage Current	I _{OZR}			±1	μA	$V_{DD1} = 5.5 V, 0 V < V_{OUT} < V_{DD1}$
COMMON-MODE TRANSIENT IMMUNITY ¹		25			$kV/\mu s$	$V_{CM} = 1$ kV, transient magnitude = 800 V

 1 CM is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. V $_{CM}$ is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

TIMING SPECIFICATIONS

T_A = -40° C to $+85^{\circ}$ C.

Table 2.

PACKAGE CHARACTERISTICS

Table 3.

¹ Device considered a 2-terminal device: Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together, and Pin 9, Pin 10, Pin 10, Pin 11, Pin 12, Pin 14, Pin 14, Pin 15, and Pin 16 are shorted together. 2 Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

Table 4.

¹ In accordance with UL 1577, each ADM2491E is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (current leakage detection limit = 10 μA).
² In accordance with DIN V VDE V 0884-10, each A In accordance with DIN V VDE V 0884-10, each ADM2491E is proof tested by applying an insulation test voltage ≥ 1590 V peak for 1 second (partial discharge detection $\lim_{x \to 0}$ = 5 pC).

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 5.

VDE 0884 INSULATION CHARACTERISTICS

This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data must be ensured by means of protective circuits.

An asterisk (*) on a package denotes VDE 0884 approval for 848 V peak working voltage.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25 °C$, unless otherwise noted. Each voltage is relative to its respective ground.

Table 7.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Absolute maximum ratings apply individually only, not in combination.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS

Figure 2. ADM2491E Pin Configuration

Table 8. Pin Function Descriptions

TEST CIRCUITS

Figure 3. Driver Voltage Measurement

Figure 4. Driver Voltage Measurement

Figure 5. Supply Current Measurement Test Circuit

Figure 6. Driver Propagation Delay

Figure 7. Receiver Propagation Delay

Figure 8. Driver Enable/Disable

Figure 9. Receiver Enable/Disable

SWITCHING CHARACTERISTICS

Figure 12. Receiver Propagation Delay

Figure 13. Receiver Enable/Disable Delay

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 14. I_{DD1} Supply Current vs. Temperature

Figure 17. Receiver Propagation Delay vs. Temperature

Figure 18. Driver/Receiver Propagation Delay, Low to High $(R_{LDIFF} = 54 \Omega, C_{L1} = C_{L2} = 100 \text{ pF})$

Figure 19. Driver/Receiver Propagation Delay, High to Low $(R_{LDIFF} = 54 \Omega, C_{L1} = C_{L2} = 100 \text{ pF})$

Figure 21. Output Current vs. Receiver Output High Voltage

Figure 22. Output Current vs. Receiver Output Low Voltage

 $I_{RxD} = -4 mA$

 $I_{RxD} = -4 mA$

CIRCUIT DESCRIPTION **ELECTRICAL ISOLATION**

In the ADM2491E, electrical isolation is implemented on the logic side of the interface. Therefore, the part has two main sections: a digital isolation section and a transceiver section (see [Figure 25\)](#page-11-1). The driver input signal, which is applied to the TxD pin and referenced to logic ground (GND1), is coupled across an isolation barrier to appear at the transceiver section referenced to isolated ground (GND2). Similarly, the receiver input, which is referenced to isolated ground in the transceiver section, is coupled across the isolation barrier to appear at the RxD pin referenced to logic ground.

*i***Coupler Technology**

The digital signals are transmitted across the isolation barrier using *i*Coupler technology. This technique uses chip scale transformer windings to couple the digital signals magnetically from one side of the barrier to the other. Digital inputs are encoded into waveforms that are capable of exciting the primary transformer winding. At the secondary winding, the induced waveforms are decoded into the binary value that was originally transmitted.

Figure 25. ADM2491E Digital Isolation and Transceiver Sections

TRUTH TABLES

The truth tables in this section use the abbreviations shown in [Table 9](#page-11-2).

Table 10. Transmitting

THERMAL SHUTDOWN

The ADM2491E contains thermal shutdown circuitry that protects the part from excessive power dissipation during fault conditions. Shorting the driver outputs to a low impedance source can result in high driver currents. The thermal sensing circuitry detects the increase in die temperature under this condition and disables the driver outputs. This circuitry is designed to disable the driver outputs when a die temperature of 150°C is reached. As the device cools, the drivers are re-enabled at a temperature of 140°C.

FAIL-SAFE RECEIVER INPUTS

The receiver inputs include a fail-safe feature that guarantees a logic high on the RxD pin when the A and B inputs are floating or open circuited.

MAGNETIC FIELD IMMUNITY

Because *i*Coupler devices use a coreless technology, no magnetic components are present and the problem of magnetic saturation of the core material does not exist. Therefore, *i*Coupler devices have essentially infinite dc field immunity. The following analysis defines the conditions under which this may occur. The 3 V operating condition of the ADM2491E is examined because it represents the most susceptible mode of operation.

The limitation on the ac magnetic field immunity of the *i*Coupler is set by the condition that induced an error voltage in the receiving coil (the bottom coil in this case) that was large to either falsely set or reset the decoder. The voltage induced across the bottom coil is given by

$$
V = -\left(\frac{-d\beta}{dt}\right) \sum \pi r_n^2 ; n = 1, 2, \ldots, N
$$

where (if the pulses at the transformer output are greater than 1.0 V in amplitude):

 β is the magnetic flux density (gauss).

N is the number of turns in the receiving coil.

 r_n is the radius of the nth turn in the receiving coil (cm).

The decoder has a sensing threshold of about 0.5 V; therefore, there is a 0.5 V margin in which induced voltages can be tolerated.

Given the geometry of the receiving coil and an imposed requirement that the induced voltage is, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in [Figure 26.](#page-12-1)

For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse and is the worst-case polarity, it reduces the received pulse from >1.0 V to 0.75 V—still well above the 0.5 V sensing threshold of the decoder.

[Figure 27](#page-12-2) shows the magnetic flux density values in terms of more familiar quantities, such as maximum allowable current flow, at given distances away from the ADM2491E transformers.

With combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces can induce error voltages large enough to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

APPLICATIONS INFORMATION **ISOLATED POWER SUPPLY CIRCUIT PCB LAYOUT**

The ADM2491E requires isolated power capable of 5 V at up to approximately 75 mA (this current is dependent on the data rate and termination resistors used) to be supplied between the V_{DD2} and the GND₂ pins. A transformer driver circuit with a center-tapped transformer and LDO can be used to generate the isolated 5 V supply, as shown in [Figure 28.](#page-13-1) The center-tapped transformer provides electrical isolation of the 5 V power supply. The primary winding of the transformer is excited with a pair of square waveforms that are 180° out of phase with each other. A pair of Schottky diodes and a smoothing capacitor are used to create a rectified signal from the secondary winding. The [ADP3330](http://www.analog.com/adp3330) linear voltage regulator provides a regulated power supply to the bus-side circuitry (V_{DD2}) of the ADM2491E.

Figure 28. Isolated Power Supply Circuit

The ADM2491E isolated RS-485 transceiver requires no external interface circuitry for the logic interfaces. Power supply bypassing is required at the input and output supply pins (see [Figure 29\)](#page-13-2). Bypass capacitors are conveniently connected between Pin 1 and Pin 2 for V_{DD1} and between Pin 15 and Pin 16 for V_{DD2} . The capacitor value should be between 0.01 μF and 0.1 μF. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be considered unless the ground pair on each package side is connected close to the package.

Figure 29. Recommended Printed Circuit Board Layout

In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this could cause voltage differentials between pins exceeding the absolute maximum ratings of the device, thereby leading to latch-up or permanent damage.

TYPICAL APPLICATIONS

[Figure 30](#page-14-1) and [Figure 31](#page-14-2) show typical applications of the ADM2491E in half-duplex and full-duplex RS-485 network configurations. Up to 32 transceivers can be connected to the RS-485 bus. To minimize reflections, the line must be terminated

at the receiving end in its characteristic impedance, and stub lengths off the main line must be kept as short as possible. For half-duplex operation, this means that both ends of the line must be terminated because either end can be the receiving end.

OUTLINE DIMENSIONS

ORDERING GUIDE

 $1 Z =$ RoHS Compliant Part.

©2007–2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06985-0-12/08(A)

www.analog.com

Rev. A | Page 16 of 16